CITY OF BIRMINGHAM

2017 CONSUMERS ANNUAL REPORT ON WATER QUALITY

ATTENTION: THIS IS AN IMPORTANT REPORT ON WATER QUALITY AND SAFETY

The City of Birmingham, The Southeastern Oakland County Water Authority and the Great Lakes Water Authority (GLWA) are proud of the fine drinking water they supply and are honored to provide this report to you. The 2017 Consumers Annual Report on Water Quality shows the sources of our water, lists the results of our tests, and contains important information about water and health. We will notify you immediately if there is ever any reason for concern about our water. We are pleased to show you how we have surpassed water quality standards as mandated by the Environmental Protection Agency (EPA) and the Michigan Department of Environmental Quality (MDEQ).

About the System

The City of Birmingham purchases water from the Southeastern Oakland County Water Authority (SOCWA) at eleven locations. SOCWA provides GLWA water through its member distribution systems to a population of 210,000 within a 56 square mile area. Current members are: Berkley, Beverly Hills, Bingham Farms, Birmingham, Clawson, Huntington Woods, Lathrup Village, Pleasant Ridge, Royal Oak, Southfield and Southfield Township.

Your source water comes from the Detroit River, situated within the Lake St. Clair, Clinton River, Detroit River, Rouge River, Ecorse River, in the U.S. and parts of the Thames River, Little River, Turkey Creek and Sydenham watersheds in Canada. The Michigan Department of Environmental Quality in partnership with the U.S. Geological Survey, the Detroit Water and Sewerage Department, and the Michigan Public Health Institute performed a source water assessment in 2004 to determine the susceptibility of potential contamination. The susceptibility rating is on a seventiered scale from "very low" to "very high" based primarily on geologic sensitivity, water chemistry, and contaminant sources. The susceptibility of our Detroit River source water intakes were determined to be highly susceptible to potential contamination. However, all four Detroit water treatment plants that use source water from Detroit River have historically provided satisfactory treatment of this source water to meet drinking water standards.

GLWA has initiated source-water protection activities that include chemical containment, spill response, and a mercury reduction program. GLWA participates in a National Pollutant Discharge Elimination System permit discharge program and has an emergency response management plan. In 2015, GLWA received a grant from The Michigan Department of Environmental Quality to develop a source water protection program for the Detroit River intakes. The programs includes seven elements that include the following: roles and duties of government units and water supply agencies, delineation of a source water protection area, identification of potential of source water protection area, management approaches for protection, contingency plans, siting of new sources and public participation and education. If you would like to know more information about the Source Water Assessment report please contact your water department (248)288-5150.

Your source water comes from the lower Lake Huron watershed. The watershed includes numerous short, seasonal streams that drain to Lake Huron. The Michigan Department of Environmental Quality in partnership with the U.S. Geological Survey, the Detroit Water and Sewerage Department, and the Michigan Public Health Institute performed a source water assessment in 2004

to determine the susceptibility of potential contamination. The susceptibility rating is a seven-tiered scale ranging from "very low" to "very high" based primarily on geologic sensitivity, water chemistry, and contaminant sources. The Lake Huron source water intake is categorized as having a moderately low susceptibility to potential contaminant sources. The Lake Huron water treatment plant has historically provided satisfactory treatment of this source water to meet drinking water standards.

In 2015, GLWA received a grant from the Michigan Department of Environmental Quality to develop a source water protection program for the Lake Huron water treatment plant intake. The program includes seven elements that include the following: roles and duties of government units and water supply agencies, delineation of a source water protection area, identification of potential of source water protection area, management approaches for protection, contingency plans, siting of new sources and public participation and education. If you would like to know more information about the Source Water Assessment report please, contact your water department (248)288-5150.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Key to the Detected Contaminants Table

Symbol	Abbreviation	Definition/Explanation
>	Greater than	
°C	Celsius	A scale of temperature in which water freezes at 0° and boils at 100° under standard conditions.
AL	Action Level	The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements which a water system must follow.
HAA5	Haloacetic Acids	HAA5 is the total of bromoacetic, chloroacetic, dibromoacetic, dichloroacetic, and trichloroacetic acids. Compliance is based on the total.
LRAA	Locational Running Annual Average	The average of analytical results for samples at a particular monitoring location during the previous four quarters.
MCL	Maximum Contaminant Level	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
MCLG	Maximum Contaminant Level Goal	The level of contaminant in drinking water below which there is no known or expected risk to health.
MRDL	Maximum Residual Disinfectant Level	The highest level of disinfectant allowed in drinking water. Ther is convincing evidence that addition of a disinfectant is necessar for control of microbial contaminants.
MRDLG	Maximum Residual Disinfectant Level Goal	The level of a drinking water disinfectant below which there is n known or expected risk to health. MRLDG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.
n/a	not applicable	
ND	Not Detected	
NTU	Nephelometric Turbidity Units	Measures the cloudiness of water.
pCi/L	Picocuries Per Liter	A measure of radioactivity
ppb	Parts Per Billion (one in one billion)	The ppb is equivalent to micrograms per liter. A microgram = 1/1000 milligram.
ppm	Parts Per Million (one in one million)	The ppm is equivalent to milligrams per liter. A milligram = 1/1000 gram.
RAA	Running Annual Average	The average of analytical results for all samples during the previous four quarters.
тт	Treatment Technique	A required process intended to reduce the level of a contaminar in drinking water.
ТТНМ	Total Trihalomethanes	Total Trihalomethanes is the sum of chloroform, bromodichloromethane, dibromoochloromethane and bromoform. Compliance is based on the total.
µmhos	Micromhos	Measure of electrical conductance of water

						atment		
						taminants	Tables	
2017 Inorganic Cher Regulated Contaminant	Test Date	Unit	Health Goal MCLG	Allowed Level MCL	ed Water T Highest Level Detected	Range of Detection	Violation yes/no	Major Sources in Drinking Water
Fluoride	5-16-2017	ppm	4	4	0.63	n/a	no	Erosion of natural deposits; Water additive, which promotes strong teetl Discharge from fertilizer and aluminu factories.
Nitrate	5-16-2017	ppm	10	10	0.38	n/a	no	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion on natural deposits.
Barium	5-16-2017	ppm	2	2	0.01	n/a	no	Discharge of drilling wastes; Dischar from metal refineries; Erosion of natural deposits
2017 Disinfection By								
Regulated Contaminant	Test Date	Unit	Health Goal MCLG	Allowed Level MCL	Highest LRAA	Range of Detection	Violation yes/no	Major Sources in Drinking Wate
Total Trihalomethanes (TTHM)	2017	ppb	n/a	80	22	8.6-43.4	no	By-product of drinking water chlorination
Haloacetic Acids (HAA5)	2017	ppb	n/a	60	12	7-18	no	By-product of drinking water disinfection
2017 Disinfectant Re	esiduals –	Monitori	ng in Dis	tribution S	ystem by 1	reatment P	lant	
Regulated Contaminant	Test Date	Unit	Health Goal MRDLG	Allowed Level MRDL	Highest RAA	Quarterly Range of Detection	Violation yes/no	Major Sources in Drinking Wate
Total Chlorine Residua	Jan-De 2017	c ppm	4	4	0.71	0.65-0.74	no	Water additive used to control microbes
2017 Turbidity – Mor Highest Single Mea				nt Finished onthly % of			Violation	I Malanda Markina Mark
Cannot exceed 1				ontniy % of mit of 0.3 N			violation yes/no	Major Sources in Drinking Water
0.24 NTU				100%		,	no	Soil Runoff
Turbidity is a measure o	f the cloudin	ess of wat	ter. We mo	nitor it becau	use it is a go	od indicator o	f the effective	eness of our filtration system.
00478 881 1-1-11	1011				I - Bl-4-II			
2017 Microbiologica	Contamir	nants – N	nonthiy N	tonitoring	in Distribu	Highest	1	
Regulated Contaminant	MCLG			MCL		Number Detected	Violation yes/no	Major Sources in Drinking Wate
Total Coliform Bacteria	0		e of Colifo samples	rm bacteria	> 5% of	0	no	Naturally present in the environment
E. coli Bacteria	0	A routin	e sample a	ind a repeat ive, and one		0	no	Sanitary defects

2017 Lead and Copper Monitoring at Customers' Tap

Regulated Contaminant	Test Date	Unit	Health Goal MCLG	Action Level AL	90 th Percentile Value*	Number of Samples over AL	Violation yes/no	Major Sources in Drinking Water
Lead	2017	ppb	0	15	1.3 ppb	0	no	Corrosion of household plumbing system; Erosion of natural deposits.
Copper	2017	ppm	1.3	1.3	0.1 ppb	0	no	Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives.

^{*}The 90th percentile value means 90 percent of the homes tested have lead and copper levels below the given 90th percentile value. If the 90th percentile value is above the AL additional requirements must be met.

Springwells Water Treatment Plant 2017 Regulated Detected Contaminants Tables

Regulated Contaminant	Treatment Technique 2017	Typical Source of Contaminant
Total Organic Carbon (ppm)	The Total Organic Carbon (TOC) removal ratio is calculated as the ratio between the actual TOC removal and the TOC removal requirements. The TOC was measured each quarter and because the level was low, there is no TOC removal requirement	Erosion of natural deposits

Contaminant	MCLG	MCL	Level Detected 2017	Source of Contamination
Sodium (ppm)	n/a	n/a	4.96	Erosion of natural deposits

Great Lakes Water Authority voluntarily monitors for the protozoans Cryptosporidium and Giardia. The December 2017 untreated water sample collected at the Belle Isle intake contained 1 Giardia cyst. All other samples collected in the year 2017 were absent for the presence of Cryptosporidium and Giardia in the untreated water. Systems using surface water Like GLWA must provide treatment so that 99.9 percent of *Giardia lamblia* is removed or inactivated.

					ast Wat					
2017 Inorganie	c Chemi	icals - Mo						is ran	169	
Regulated Contaminar	1	Test Date	Unit	Health Goal MCLG	Allowed Level	Highest Level Detected	Range of Detection		ntion /no	Major Sources in Drinking Water
Fluoride		5-16-2017	ppm	4	4	0.66	n/a	n	0	Erosion of natural deposits; Water additive, which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate		5-16-2017	ppm	10	10	0.44	n/a	n	0	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Barium		5-16-2017	ppm	2	2	0.01	n/a	n	0	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
0048 81 1 6										
2017 Disinfect Regulate		Products	- Monite	Health	Allowed	Highest	Range		olation	
Contamin	ant	Date	-	Goal MCLG	Level MCL	LRAA	Detecti	on y	es/no	
Total Trihalome (TTHM)		2017	ppb	n/a	80	22	8.6-43	4	по	By-product of drinking water chlorination
Haloacetic Acid (HAA5)		2017	ppb	n/a	60	12	7-18		no	By-product of drinking water disinfection
2017 Disinfect										
Regulate Contamin		Test Date	Unit	Health Goal MRDLG	Allowed Level MRDL	Highest RAA	Quarte Range Detecti	of y	olation es/no	Major Sources in Drinking Water
Total Chlorine F	Residual	Jan-De 2017	c ppm	4	4	0.78	0.66-0.	82	no	Water additive used to control microbes
2017 Turbidity Highest Sing					nt Finished onthly % of \$			1.00		
Cannot e	xceed 1				imit of 0.3 NT	ľU (minimu		ye	lation s/no	Major Sources in Drinking Water
	8 NTU	de a selacción		18/	100 %				no Waatii	Soil Runoff eness of our filtration system.
2017 Microbio								em		
Regulate Contamina		MCLG			MCL		Numbe	r Vic	lation es/no	Major Sources in Drinking Water
Total Coliform Bacteria		0		ce of Colifo y samples	orm bacteria	> 5% of	0		no	Naturally present in the environment
E. coli Bacteria		0		liform posit	and a repeat tive, and one		0		no	Sanitary defects
2017 Lead and	Conne	r Monitor	ing at C	uetomore	' Tan					
Regulated	Test	Unit	Health	Action	90 th	Numb	or of W	olation		Major Sources in Drinking Water
Contaminant	Date	Onk	Goal MCLG	Level AL	Percentile Value*		oles y	es/no		
Lead	2017	ppb	0	15	1.3 ppb	0		no		osion of household plumbing system; ion of natural deposits.
Copper	2017	ppm	1.3	1.3	0.1 ppb	0		no		osion of household plumbing system; ion of natural deposits; Leaching from

					ron Wa					
2017 Inorganio	Chem	icals – M						ants	ables	
Regulated Contaminan		Test Date	Unit	Health Goal MCLG	Allowed Level	Highest Level Detected	Range		Violation yes/no	Major Sources in Drinking Water
Fluoride		5-16-2017	ppm	4	4	0.72	n/a		no	Erosion of natural deposits; Water additive, which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate	1	5-16-2017	ppm	10	10	0.34	n/a	1	no	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Barium		5-16-2017	ppm	2	2	0.01	n/a		no	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
2017 Disinfect	ion By-	Products	- Monit		Distribution	System, S	Stage 2	2 Disin	fection	By-Products
Regulate Contamina		Test Date	Unit	Health Goal MCLG	Allowed Level MCL	Highest LRAA		ige of ection	Violatio yes/no	
Total Trihalome (TTHM)	thanes	2017	ppb	n/a	80	22	8.6	-43.4	no	By-product of drinking water chlorination
Haloacetic Acid	s	2017	ppb	n/a	60	12	7	-18	no	By-product of drinking water disinfection
Regulate Contamin		Test Date	Unit	Health Goal MRDLG	Allowed Level MRDL	Highest RAA	Ran	rterly ige of ection	Violatio yes/ne	o Major Sources in Drinking Water
Total Chlorine R	Residual	Jan-De 2017	ppm	4	4	0.75	0.65	5-0.80	no	Water additive used to control microbes
2017 Turbidity Highest Sing					nt Finished onthly % of \$		a e til m m		Violatio	- 1
Cannot ex	ceed 1				imit of 0.3 NT	ľU (minimu			yes/no	Major Sources in Drinking Water
	9 NTU	Abo olovalio			100 %			-1	no	Soil Runoff
Turbidity is a mea	asure or	the cloudin	ess or wa	ter, we mo	onitor it becau	ise it is a go	oa inaic	ator or i	the effect	iveness of our filtration system.
2017 Microbio	logical	Contamir	nants - N	Monthly N	Monitorina i	n Distribu	tion Sy	/stem		
Regulated Contamina	1	MCLG		,	MCL		High Num Dete	nest	Violatio	
Total Coliform Bacteria		0		e of Colifo	rm bacteria >	5% of	Dete		no	Naturally present in the environment
E. coli Bacteria		0	A routin total col	e sample a	and a repeat sive, and one i		0	,	no	Sanitary defects
			E.coli po	ositive.						
2017 Lead and	Сорре	er Monito	ring at C	ustomers	s' Tap					
Regulated Contaminant	Test Date	Unit	Health Goal	Action Level	90 th Percentile	Number	over	Violat yes/		Major Sources in Drinking Water
Lead	2014	ppb	MCLG 0	15	1.3 ppb	0		no		rrosion of household plumbing system;
Copper	2014	ppm	1.3	1.3	0.1 ppb	0		no	Co	rrosion of household plumbing system; osion of natural deposits; Leaching from od preservatives.
*The 90th percent percentile value i							copper l	evels be		given 90th percentile value. If the 90th

											er Treatme ted Contamina		
ercentile value is above the A			Water Treatment	Plant		Regulated Contam	ninant			ment Techr		iiits rabies	Typical Source of Contar
			d Detected Contaminar			- gameta comun	The	Total Orga	anic Carbon (TOC) remova	al ratio is calculated	as the ratio	7,
egulated Contaminant		Treatme	ent Technique 2017		Typical Source of Contaminant	Total Organic Car	rbon beti	veen the a	ctual TOC rei	moval and the	TOC removal req	irements.	Erosion of natural depos
Total Organic Carbon (ppm)			C) removal ratio is calculated val and the TOC removal requ		Erosion of natural deposits	(ppm)			measured ea C removal re		id because the leve	was low,	
(ppm)	The TOC was n	neasured each	quarter and because the level										
	there is no TOC	removal requi	rement			Radionuclides 201	14						
						Regulated	Test	Unit	Health Goal	Allowed	Level detected	Violation	Major Sources in Drinking
Special Monitoring 2017						contaminant	date	O.M.	MCLG	Level	Level detected	Yes/no	major oources in Drinking
Contaminant	MCLG	MCL	Level Detected 2017		Source of Contamination	Combined Radium 226 and 228	5-13-14	pCi/L	0	5	0.86 + or - 0.55	no	Erosion of natural deposi
untreated water samp 2017 were absent for	le collected at t the presence of	he Belle Isle	intake contained 1 Giardia o	oridium and cyst. All othe eated water.	Erosion of natural deposits Giardia. The December 2017 or samples collected in the year Systems using surface water nactivated.	Contaminar Sodium (ppm)		MCLG n/a	MCL n/a	Level	Detected 2017 4.46		Source of Contamination Erosion of natural deposits
Great Lakes Water Au untreated water samp 2017 were absent for	uthority voluntar le collected at t the presence of	ily monitors f he Belle Isle f Cryptosporio	or the protozoans Cryptosp intake contained 1 Giardia o dium and Giardia in the untr	oridium and cyst. All othe eated water.	Giardia. The December 2017 or samples collected in the year . Systems using surface water	Contaminar Sodium (ppm) UCMR3 - 20 The Unregu	014 slated Conta	n/a	n/a Monitoring	Rule (UCM	4.46 R 3) provides E	PA and oth	Erosion of natural deposits er interested parties with
Great Lakes Water Au untreated water samp 2017 were absent for	uthority voluntar le collected at t the presence of	ily monitors f he Belle Isle f Cryptosporio	or the protozoans Cryptosp intake contained 1 Giardia o dium and Giardia in the untr	oridium and cyst. All othe eated water.	Giardia. The December 2017 or samples collected in the year . Systems using surface water	Contaminar Sodium (ppm) UCMR3 - 20 The Unregu scientifically	014 slated Conta	n/a minant M	n/a Monitoring	Rule (UCM	4.46 R 3) provides Eleants in drinking	PA and other	Erosion of natural deposits
Great Lakes Water Au untreated water samp 2017 were absent for	uthority voluntar le collected at t the presence of	ily monitors f he Belle Isle f Cryptosporio	or the protozoans Cryptosp intake contained 1 Giardia o dium and Giardia in the untr	oridium and cyst. All othe eated water.	Giardia. The December 2017 or samples collected in the year . Systems using surface water	Contaminar Sodium (ppm) UCMR3 - 20 The Unregu scientifically source of occ	014 plated Conta v valid data occurrence a	n/a iminant M on the or nd expos	Monitoring occurrence of sure inform	Rule (UCM of contamination that t	4.46 R 3) provides Eleants in drinking	PA and oth water. The to develop	Erosion of natural deposits er interested parties with se data serve as a primary regulatory decisions.
Great Lakes Water Au untreated water samp 2017 were absent for	uthority voluntar le collected at t the presence of	ily monitors f he Belle Isle f Cryptosporio	or the protozoans Cryptosp intake contained 1 Giardia o dium and Giardia in the untr	oridium and cyst. All othe eated water.	Giardia. The December 2017 or samples collected in the year . Systems using surface water	Contaminar Sodium (ppm) UCMR3 - 20 The Unregu scientifically source of occ	014 llated Conta y valid data ccurrence a	n/a minant M on the oo nd expos	Monitoring occurrence of sure inform	Rule (UCM of contamin ation that to average a	R 3) provides E lants in drinking he agency uses	PA and oth water. The to develop	Erosion of natural deposits er interested parties with se data serve as a primary regulatory decisions.
Great Lakes Water Au untreated water samp 2017 were absent for	uthority voluntar le collected at t the presence of	ily monitors f he Belle Isle f Cryptosporio	or the protozoans Cryptosp intake contained 1 Giardia o dium and Giardia in the untr	oridium and cyst. All othe eated water.	Giardia. The December 2017 or samples collected in the year . Systems using surface water	Contaminar Sodium (ppm) UCMR3 - 2(The Unregu scientifically source of oc The table lis Detection le	014 llated Conta y valid data ccurrence a	n/a minant M on the oo nd expos num repo micro gra	Monitoring occurrence of sure inform	Rule (UCM of contamin ation that the average are (1µg/L = Reporting	R 3) provides E lants in drinking he agency uses	PA and oth water. The to develop	Erosion of natural deposits er interested parties with se data serve as a primary regulatory decisions.
Great Lakes Water Au untreated water samp 2017 were absent for	uthority voluntar le collected at t the presence of	ily monitors f he Belle Isle f Cryptosporio	or the protozoans Cryptosp intake contained 1 Giardia o dium and Giardia in the untr	oridium and cyst. All othe eated water.	Giardia. The December 2017 or samples collected in the year . Systems using surface water	Contaminar Sodium (ppm) UCMR3 - 20 The Unregu scientifically source of oc The table lis Detection le	014 Oldated Contain valid data accurrence a sts the minimizers are in a	n/a minant M on the oo nd expos num repo	Monitoring occurrence of sure inform orting level	Rule (UCM of contamination that the average are (1µg/L = Reporting µg/L)	R 3) provides E lants in drinking he agency uses and range of ear 1ppb)	PA and oth water. The to develop th contamin	Erosion of natural deposits er interested parties with se data serve as a primary regulatory decisions.
Great Lakes Water Au untreated water samp 2017 were absent for	uthority voluntar le collected at t the presence of	ily monitors f he Belle Isle f Cryptosporio	or the protozoans Cryptosp intake contained 1 Giardia o dium and Giardia in the untr	oridium and cyst. All othe eated water.	Giardia. The December 2017 or samples collected in the year . Systems using surface water	Contaminar Sodium (ppm) UCMR3 - 20 The Unregu scientifically source of oc The table lis Detection le	014 plated Conta y valid data courrence a sts the minir evels are in a	n/a minant M on the oo nd expos num repo	Monitoring occurrence of sure informorting level arms per Little Minimum I Level 0.	Rule (UCM) of contamination that it, average a er (1µg/L = Reporting µg/L 2 2 3	R 3) provides E lants in drinking he agency uses and range of ear 1ppb)	PA and oth water. The to develop th contamin	Erosion of natural deposits er interested parties with se data serve as a primary regulatory decisions.
Great Lakes Water Au untreated water samp 2017 were absent for	uthority voluntar le collected at t the presence of	ily monitors f he Belle Isle f Cryptosporio	or the protozoans Cryptosp intake contained 1 Giardia o dium and Giardia in the untr	oridium and cyst. All othe eated water.	Giardia. The December 2017 or samples collected in the year . Systems using surface water	Contaminar Sodium (ppm) UCMR3 - 20 The Unregu scientifically source of oc The table lis Detection le	polation of the control of the contr	n/a minant M on the oo nd expos num repo	Monitoring occurrence of sure inform orting level ams per Lit Level 0.	Rule (UCM) of contamination that it, average a er (1µg/L = Reporting µg/L, 2	R 3) provides Eants in drinking he agency uses and range of ear 1ppb) AVG 0.23	PA and oth water. The to develop th contamin Range	Erosion of natural deposits er interested parties with se data serve as a primary regulatory decisions.

IMPORTANT HEALTH INFORMATION

Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. City of Lathrup Village is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at https://www.epa.gov/safewater/lead.

People With Special Health Concerns

Some people may be more vulnerable to contaminants in drinking water than is the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791).

Violation Notice – Consumer Notification Reporting for Lead and Copper for the City of Birmingham

During the 2017 lead and copper monitoring period the City of Birmingham was in violation of the Safe Drinking Water Act, 1976 PA399 as amended (Act 399); specifically, R 325.10410, Public education regarding lead, of the 1979 Administrative Code.

In accordance with above rule, a supplier of water shall provide notice as soon as practical, but no later than 30 days after learning the individual tap results, to the consumers who sampled. A sample copy of the consumer notification must be sent to the DEQ no later than three months following the end of the monitoring period, along with certification the notices were distributed.

The consumer notice was not issued to the consumers within the 30 days, resulting in this violation. The violation began the day after the 30 day distribution deadline and continued until the city issued the consumer notification on September 26, 2017.

The City of Birmingham has returned to compliance.

Questions:

- Local Distribution: City of Birmingham, Public Works Administration (248) 530-1700
- Southeastern Oakland County Water Supply System Water Authority offices: (248) 288-5150. Visit our web site at www.socwa.org
- Detroit Water and Sewerage Department Water Quality Division at (313) 926-8128 www.dwsd.org
- Great Lakes Water Authority www.glwater.org
- Michigan Department of Environmental Quality (586) 753-3755 www.michigan.gov/deg
- U.S. Environmental Protection Agency Safe Drinking Water Hotline: (800) 426-4791.
- Water quality data for community water systems throughout the United States is available at www.epa.gov/drink/